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A	cute	cat	riding	a	yellow	surfboard,	fast	waves.

A	cute	corgi	wearing	a	blue	sweater,	walking	towards	the	camera,	slow	motion.

A	raccoon	wearing	a	black	jacket,	dancing	in	slow	motion	in	front	of	the	pyramids.

Figure 1. W.A.L.T samples for text-to-video generation. Our approach can generate high-resolution, temporally consistent photorealistic
videos from text prompts. The samples shown are 512× 896 resolution over 3.6 seconds duration at 8 frames per second.

Abstract

We present W.A.L.T, a transformer-based approach for
photorealistic video generation via diffusion modeling. Our
approach has two key design decisions. First, we use a
causal encoder to jointly compress images and videos within
a unified latent space, enabling training and generation
across modalities. Second, for memory and training effi-
ciency, we use a window attention architecture tailored for
joint spatial and spatiotemporal generative modeling. Taken
together these design decisions enable us to achieve state-
of-the-art performance on established video (UCF-101 and
Kinetics-600) and image (ImageNet) generation benchmarks
without using classifier free guidance. Finally, we also train
a cascade of three models for the task of text-to-video gen-
eration consisting of a base latent video diffusion model,
and two video super-resolution diffusion models to generate

videos of 512× 896 resolution at 8 frames per second.

1. Introduction
Transformers [73] are highly scalable and parallelizable neu-
ral network architectures designed to win the hardware lot-
tery [39]. This desirable property has encouraged the re-
search community to increasingly favor transformers over
domain-specific architectures in diverse fields such as lan-
guage [26, 55–57], audio [1], speech [58], vision [18, 30],
and robotics [5, 7, 89]. Such a trend towards unification
allows researchers to share and build upon advancements
in traditionally disparate domains. Thus, leading to a virtu-
ous cycle of innovation and improvement in model design
favoring transformers.

∗Work partially done during an internship at Google.



A notable exception to this trend is generative mod-
elling of videos. Diffusion models [67, 69] have emerged
as a leading paradigm for generative modelling of im-
ages [16, 33] and videos [36]. However, the U-Net architec-
ture [33, 62], consisting of a series of convolutional [46] and
self-attention [73] layers, has been the predominant back-
bone in all video diffusion approaches [16, 33, 36]. This
preference stems from the fact that the memory demands
of full attention mechanisms in transformers scale quadrat-
ically with input sequence length. Such scaling leads to
prohibitively high costs when processing high-dimensional
signals like video.

Latent diffusion models (LDMs) [61] reduce computa-
tional requirements by operating in a lower-dimensional
latent space derived from an autoencoder [20, 72, 75]. A
critical design choice in this context is the type of latent space
employed: spatial compression (per frame latents) versus
spatiotemporal compression. Spatial compression is often
preferred because it enables leveraging pre-trained image
autoencoders and LDMs, which are trained on large paired
image-text datasets. However, this choice increases network
complexity and limits the use of transformers as backbones,
especially in generating high-resolution videos due to mem-
ory constraints. On the other hand, while spatiotemporal
compression can mitigate these issues, it precludes the use
of paired image-text datasets, which are much larger and
diverse than their video counterparts.

We present Window Attention Latent Transformer
(W.A.L.T): a transformer-based method for latent video dif-
fusion models (LVDMs). Our method consists of two stages.
First, an autoencoder maps both videos and images into a
unified, lower-dimensional latent space. This design choice
enables training a single generative model jointly on image
and video datasets and significantly reduces the computa-
tional burden for generating high resolution videos. Sub-
sequently, we propose a new design of transformer blocks
for latent video diffusion modeling which is composed of
self-attention layers that alternate between non-overlapping,
window-restricted spatial and spatiotemporal attention. This
design offers two primary benefits: firstly, the use of lo-
cal window attention significantly lowers computational de-
mands. Secondly, it facilitates joint training, where the spa-
tial layers independently process images and video frames,
while the spatiotemporal layers are dedicated to modeling
the temporal relationships in videos.

While conceptually simple, our method provides the first
empirical evidence of transformers’ superior generation qual-
ity and parameter efficiency in latent video diffusion on pub-
lic benchmarks. Specifically, we report state-of-the-art re-
sults on class-conditional video generation (UCF-101 [70]),
frame prediction (Kinetics-600 [9]) and class conditional
image generation (ImageNet [15]) without using classifier
free guidance. Finally, to showcase the scalability and ef-

ficiency of our method we also demonstrate results on the
challenging task of photorealistic text-to-video generation.
We train a cascade of three models consisting of a base la-
tent video diffusion model, and two video super-resolution
diffusion models to generate videos of 512× 896 resolution
at 8 frames per second and report state-of-the-art zero-shot
FVD score on the UCF-101 benchmark.

2. Related Work
Video Diffusion Models. Diffusion models have shown
impressive results in image [33, 38, 52, 61, 67, 68] and
video generation [4, 24, 29, 34, 36, 66]. Video diffusion
models can be categorized into pixel-space [34, 36, 66] and
latent-space [4, 24, 31, 83] approaches, the later bringing
important efficiency advantages when modeling videos. Ho
et al. [36] demonstrated that the quality of text conditioned
video generation can be significantly improved by jointly
training on image and video data. Similarly, to leverage
image datasets, latent video diffusion models inflate a pre-
trained image model, typically a U-Net [62], into a video
model by adding temporal layers, and initializing them as
the identity function [4, 34, 66]. Although computationally
efficient, this approach couples the design of video and im-
age models, and precludes spatiotemporal compression. In
this work, we operate on a unified latent space for images
and videos, allowing us to leverage large scale image and
video datasets while enjoying computational efficiency gains
from spatiotemporal compression of videos.

Transformers for Generative Modeling. Mul-
tiple classes of generative models have utilized
Transformers [73] as backbone, such as, Genera-
tive adversarial networks [42, 47, 85], autoregres-
sive [10, 11, 20, 21, 27, 59, 74, 77, 78, 80, 81] and
diffusion [2, 22, 41, 50, 53, 87] models. Inspired by the
success of autoregressive pretraining of large language
models [55–57], Ramesh et al. [59] trained a text-to-image
generation model by predicting the next visual token
obtained from an image tokenizer. Subsequently, this
approach was applied to multiple applications including
class-conditional image generation [20, 79], text-to-image
[17, 59, 76, 80] or image-to-image translation [21, 77]. Sim-
ilarly, for video generation, transformer-based models were
proposed to predict next tokens using 3D extensions of VQ-
GAN [23, 37, 78, 81] or using per frame image latents [27].
Autoregressive sampling of videos is typically impractical
given the very long sequences involved. To alleviate this
issue, non-autoregressive sampling [10, 11], i.e. parallel
token prediction, has been adopted as a more efficient
solution for transformer-based video generation [27, 74, 81].
Recently, the community has started adopting transformers
as the denoising backbone for diffusion models in place of
U-Net [12, 38, 50, 53, 87]. To the best of our knowledge,
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Figure 2. W.A.L.T. We encode images and videos into a shared latent space. The transformer backbone processes these latents with blocks
having two layers of window-restricted attention: spatial layers capture spatial relations in both images and video, while spatiotemporal
layers model temporal dynamics in videos and passthrough images via identity attention mask. Text conditioning is done via spatial
cross-attention.

our work is the first successful empirical demonstration
(§ 5.1) of a transformer-based backbone for jointly training
image and video latent diffusion models.

3. Background
Diffusion formulation. Diffusion models [33, 67, 69] are a
class of generative models which learn to generate data by
iteratively denoising samples drawn from a noise distribution.
Gaussian diffusion models assume a forward noising process
which gradually applies noise (ε) to real data (x0 ∼ pdata).
Concretely,

xt =
√
γ(t) x0 +

√
1− γ(t) ε, (1)

where ε ∼ N (0, I), t ∈ [0, 1], and γ(t) is a monotonically
decreasing function (noise schedule) from 1 to 0. Diffusion
models are trained to learn the reverse process that inverts
the forward corruptions:

Ex∼pdata,t∼U(0,1),ε∼N (0,I)

[
‖y − fθ(xt; c, t)‖2

]
, (2)

where fθ is the denoiser model parameterized by a neural net-
work, c is conditioning information e.g., class labels or text
prompts, and the target y can be random noise ε, denoised in-
putx0 or v =

√
1− γ(t) ε−

√
γ(t)x0. Following [34, 63],

we use v-prediction in all our experiments.
Latent diffusion models (LDMs). Processing high-

resolution images and videos using raw pixels requires
considerable computational resources. To address this,
LDMs operate on the low dimensional latent space of a
VQ-VAE [20, 72]. VQ-VAE consists of an encoder E(x)
that encodes an input video x ∈ RT×H×W×3 into a latent
representation z ∈ Rt×h×w×c. The encoder downsamples
the video by a factor of fs = H/h = W/w and ft = T/t,
where T = t = 1 corresponds to using an image autoen-
coder. An important distinction from the original VQ-VAE
is the absence of a codebook of quantized embeddings as

diffusion models can operate on continous latent spaces. A
decoder D is trained to predict a reconstruction of the video,
x̂, from z. Following VQ-GAN [20], reconstruction qual-
ity can be further improved by adding adversarial [25] and
perceptual losses [43, 86].

4. W.A.L.T
4.1. Learning Visual Tokens

A key design decision in video generative modeling is the
choice of latent space representation. Ideally, we want a
shared and unified compressed visual representation that
can be used for generative modeling of both images and
videos [74, 82]. The unified representation is important
because joint image-video learning is preferable due to a
scarcity of labeled video data [34], such as text-video pairs.
Concretely, given a video sequence x ∈ R(1+T )×H×W×C ,
we aim to learn a low-dimensional representation z ∈
R(1+t)×h×w×c that performs spatial-temporal compression
by a factor of fs = H/h = W/w in space and a factor of
ft = T/t in time. To enable a unified representation for
both videos and static images, the first frame is always en-
coded independently from the rest of the video. This allows
static images x ∈ R1×H×W×C to be treated as videos with
a single frame, i.e. z ∈ R1×h×w×c.

We instantiate this design with the causal 3D CNN
encoder-decoder architecture of the MAGVIT-v2 tok-
enizer [82]. Typically the encoder-decoder consists of reg-
ular 3D convolution layers which cannot process the first
frame independently [23, 81]. This limitation stems from the
fact that a regular convolutional kernel of size (kt, kh, kw)
will operate on

⌊
kt−1
2

⌋
frames before and

⌊
kt
2

⌋
frames after

the input frames. Causal 3D convolution layers solve this
issue as the convolutional kernel operates on only the past
kt − 1 frames. This ensures that the output for each frame
is influenced solely by the preceding frames, enabling the
model to tokenize the first frame independently.



After this stage, the input to our model is a batch of la-
tent tensors z ∈ R(1+t)×h×w×c representing a single video
or a stack of 1 + t independent images (Fig. 2). Differ-
ent from [82], our latent representation is real-valued and
quantization-free. In the section below we describe how our
model jointly processes a mixed batch of images and videos.

4.2. Learning to Generate Images and Videos

Patchify. Following the original ViT [18], we “patchify”
each latent frame independently by converting it into a se-
quence of non-overlapping hp×wp patches where hp = h/p,
wp = w/p and p is the patch size. We use learnable posi-
tional embeddings [73], which are the sum of space and
time positional embeddings. Position embeddings are added
to the linear projections [18] of the patches. Note that for
images, we simply add the temporal position embedding
corresponding to the first latent frame.
Window attention. Transformer models composed entirely
of global self-attention modules incur significant compute
and memory costs, especially for video tasks. For efficiency
and for processing images and videos jointly we compute
self-attention in windows [27, 73], based on two types of non-
overlapping configurations: spatial (S) and spatiotemporal
(ST), cf . Fig. 2. Spatial Window (SW) attention is restricted
to all the tokens within a latent frame of size 1×hp×wp (the
first dimension is time). SW models the spatial relations in
images and videos. Spatiotemporal Window (STW) attention
is restricted within a 3D window of size (1 + t) × h′p ×
h′w, modeling the temporal relationships among video latent
frames. For images, we simply use an identity attention
mask ensuring that the value embeddings corresponding to
the image frame latents are passed through the layer as is.
Finally, in addition to absolute position embeddings we also
use relative position embeddings [49].

Our design, while conceptually straightforward, achieves
computational efficiency and enables joint training on image
and video datasets. In contrast to methods based on frame-
level autoencoders [4, 24, 27], our approach does not suffer
from flickering artifacts, which often result from encoding
and decoding video frames independently. However, similar
to Blattmann et al. [4], we can also potentially leverage pre-
trained image LDMs with transformer backbones by simply
interleaving STW layers.

4.3. Conditional Generation

To enable controllable video generation, in addition to condi-
tioning on timestep t, diffusion models are often conditioned
on additional conditional information c such as class labels,
natural language, past frames or low resolution videos. In
our transformer backbone, we incorporate three types of
conditioning mechanisms as described in what follows:

Cross-attention. In addition to self-attention layers in
our window transformer blocks, we add a cross-attention

layer for text conditioned generation. When training models
on just videos, the cross-attention layer employs the same
window-restricted attention as the self-attention layer, mean-
ing S/ST blocks will have SW/STW cross-attention layers
(Fig. 2). However, for joint training, we only use SW cross-
attention layers. For cross-attention we concatenate the input
signal (query) with the conditioning signal (key, value) as
our early experiments showed this improves performance.

AdaLN-LoRA. Adaptive normalization layers are an
important component in a broad range of generative and
visual synthesis models [16, 19, 44, 52–54]. A simple
way to incorporate adaptive layer normalization is to in-
clude for each layer i, an MLP layer to regress a vec-
tor of conditioning parameters Ai = MLP(c + t), where
Ai = concat(γ1, γ2, β1, β2, α1, α2), Ai ∈ R6×dmodel , and
c ∈ Rdmodel , t ∈ Rdmodel are the condition and timestep em-
beddings. In the transformer block, γ and β scale and shift
the inputs of the multi-head attention and MLP layers, re-
spectively, while α scales the output of both the multi-head
attention and MLP layers. The parameter count of these
additional MLP layers scales linearly with the number of
layers and quadratically with the model’s dimensional size
(num blocks × dmodel × 6 × dmodel). For instance, in a
ViT-g model with 1B parameters, the MLP layers contribute
an additional 475M parameters. Inspired by [40], we pro-
pose a simple solution dubbed AdaLN-LoRA, to reduce the
model parameters. For each layer, we regress conditioning
parameters as

A1 = MLP(c+ t), Ai = A1 +W i
bW

i
a(c+ t) ∀i 6= 1,

(3)

where W i
b ∈Rdmodel×r, W i

a ∈Rr×(6×dmodel). This reduces
the number of trainable model parameters significantly when
r� dmodel. For example, a ViT-g model with r=2 reduces
the MLP parameters from 475M to 12M.

Self-conditioning. In addition to being conditioned on
external inputs, iterative generative algorithms can also be
conditioned on their own previously generated samples dur-
ing inference [3, 13, 65]. Specifically, Chen et al. [13]
modify the training process for diffusion models, such that
with some probability psc the model first generates a sam-
ple z̃0 = fθ(zt;0, c, t) and then refines this estimate us-
ing another forward pass conditioned on this initial sample:
fθ(zt;stopgrad(z̃0), c, t). With probability 1− psc, only
a single forward pass is done. We concatenate the model es-
timate with the input along the channel dimension and found
this simple technique to work well when used in conjunction
with v-prediction.

4.4. Autoregressive Generation

For generating long videos via autoregressive prediction we
also train our model jointly on the task of frame prediction.
This is achieved by conditioning the model on past frames



Method K600 FVD↓ UCF FVD↓ params. steps

TrIVD-GAN-FP [51] 25.7±0.7 – – 1
Video Diffusion [36] 16.2±0.3 – 1.1B 256
RIN [41] 10.8 – 411M 1000
TATS [23] – 332±18 321M 1024
Phenaki [74] 36.4±0.2 – 227M 48
MAGVIT [81] 9.9±0.3 76±2 306M 12
MAGVITv2 [82] 4.3±0.1 58±2 307M 24

W.A.L.T-L Ours 3.3±0.0 46±2 313M 50
W.A.L.T-XL Ours – 36±2 460M 50

Table 1. Video generation evaluation on frame prediction on
Kinetics-600 and class-conditional generation on UCF-101.

with a probability of pfp during training. Specifically, the
model is conditioned using cfp = concat(mfp ◦ zt,mfp),
where mfp is a binary mask. The binary mask indicates the
number of past frames used for conditioning. We condi-
tion on either 1 latent frame (image to video generation)
or 2 latent frames (video prediction). This conditioning is
integrated into the model through concatenation along the
channel dimension of the noisy latent input. During infer-
ence, we use standard classifier-free guidance with cfp as the
conditioning signal.

4.5. Video Super Resolution

Generating high-resolution videos with a single model is
computationally prohibitive. Following [35], we use a cas-
caded approach with three models operating at increasing
resolutions. Our base model generates videos at 128× 128
resolution which are subsequently upsampled twice via two
super resolution stages. We first spatially upscale the low res-
olution input zlr (video or image) using a depth-to-space con-
volution operation. Note that, unlike training where ground
truth low-resolution inputs are available, inference relies on
latents produced by preceding stages (cf . teaching-forcing).
To reduce this discrepancy and improve the robustness of
the super-resolution stages in handling artifacts generated by
lower resolution stages, we use noise conditioning augmen-
tation [35]. Concretely, noise is added in accordance with
γ(t), by sampling a noise level as tsr ∼ U(0, tmax noise) and
is provided as input to our AdaLN-LoRA layers.
Aspect-ratio finetuning. To simplify training and leverage
broad data sources with different aspect ratios, we train our
base stage using a square aspect ratio. We fine-tune the base
stage on a subset of data to generate videos with a 9 : 16
aspect ratio by interpolating position embeddings.

5. Experiments
In this section, we evaluate our method on multiple tasks:
class-conditional image and video generation, frame pre-
diction and text conditioned video generation and perform

Method Cost (Iter×BS) FID↓ IS↑ params. steps

BigGAN-deep [6] - 6.95 171.4 160M 1
LDM-4 [61] 178k×1200 10.56 103.5 400M 250
DiT-XL/2 [53] 7000k×256 9.62 121.5 675M 250
ADM [16] - 7.49 127.5 608M 2000
MDT [22] 6500k×256 6.23 143.0 676M 250
MaskDiT [87] 1200k×1024 5.69 178.0 736M 40
RIN [41] 600k×1024 3.42 182.0 410M 1000
simple diffusion [38] 500K×2048 2.77 211.8 2B 512
VDM++ [45] - 2.40 225.3 2B 512

W.A.L.T-L Ours 437k×1024 2.56 215.1 460M 50

Table 2. Class-conditional image generation on ImageNet
256×256. We adopt the evaluation protocol and implementation
of ADM [16] and report results without classifier free guidance.

extensive ablation studies of different design choices. For
qualitative results, see Fig. 1, Fig. 3, Fig. 4 and videos on
our project website. See appendix for additional details.

5.1. Visual Generation

Video generation. We consider two standard video bench-
marks, UCF-101 [70] for class-conditional generation and
Kinetics-600 [9] for video prediction with 5 conditioning
frames. We use FVD [71] as our primary evaluation metric.
Across both datasets, W.A.L.T significantly outperforms all
prior works (Tab. 1). Compared to prior video diffusion mod-
els, we achieve state-of-the-art performance with less model
parameters, and require 50 DDIM [68] inference steps.
Image generation. To verify the modeling capabilities of
W.A.L.T on the image domain, we train a version of W.A.L.T
for the standard ImageNet class-conditional setting. For eval-
uation, we follow ADM [16] and report the FID [32] and
Inception [64] scores calculated on 50K samples generated
in 50 DDIM steps. We compare (Table 2) W.A.L.T with
state-of-the-art image generation methods for 256 × 256
resolution. Our model outperforms prior works without re-
quiring specialized schedules, convolution inductive bias,
improved diffusion losses, and classifier free guidance. Al-
though VDM++ [45] has slightly better FID score, the model
has significantly more parameters (2B).

5.2. Ablation Studies

We ablate W.A.L.T to understand the contribution of various
design decisions with the default settings: model L, patch
size 1, 1× 16× 16 spatial window, 5× 8× 8 spatiotemporal
window, psc = 0.9, c = 8 and r = 2.
Patch size. In various computer vision tasks utilizing
ViT[18]-based models, a smaller patch size p has been shown
to consistently enhance performance [8, 18, 28, 84]. Sim-
ilarly, our findings also indicate that a reduced patch size
improves performance (Table 3a).
Window attention. We compare three different STW win-
dow configurations with full self-attention (Table 3b). We

https://walt-video-diffusion.github.io/


patch size p FVD↓ IS↑

1 60.7 87.2
2 134.4 82.2
4 461.8 63.9

(a) Patch size. Lower patch size is significantly
better.

st window FVD↓ IS↑ sps

5× 4× 4 56.9 87.3 2.24
5× 8× 8 59.6 87.4 2.00

5× 16× 16 55.3 87.4 1.75

full self attn. 59.9 87.8 1.20

(b) Spatiotemporal window size. Full self-attention is not essen-
tial for good performance. sps is steps per sec.

psc FVD↓ IS↑

0.0 109.9 82.6
0.3 76.0 86.5
0.6 60.0 86.8
0.9 61.4 87.1

(c) Self-conditioning. Higher psc is better.

r FVD↓ IS↑ params

2 60.7 87.2 313 M
4 56.6 87.3 314 M

16 55.5 88.0 316 M
64 54.4 87.9 324 M
256 52.5 88.5 357 M

(d) AdaLN-LoRA. Bigger r is better.

FVD↓ IS↑

w/o qk norm [14] 59.0 86.8
w/o latent norm 67.9 87.1
w/o zero snr [48] 91.0 84.2

full method 60.7 87.2

(e) Other improvements. See text for details.

c rFVD↓ FVD↓ IS↑

4 37.7 86.4 84.9
8 17.1 75.4 86.3
16 8.2 67.0 86.0
32 3.5 83.4 82.9

(f) Latent dimension c. Higher c is better.

Table 3. Ablation experiments on UCF-101 [70]. We compare FVD and inception scores to ablate important design decisions with the
default setting: L model, 1× 16× 16 spatial window, 5× 8× 8 saptiotemporal (st) window, psc = 0.9, c = 8 and r = 2.

Model AdaLN FVD↓ IS↑ params. final loss

L separate 34.6 90.2 458M 0.274

XL LoRA-2 36.7 89.4 460M 0.268

Table 4. Parameter matched comparison between AdaLN-LoRA
and per layer adaln layers. See text for details.

find that local self-attention can achieve competitive (or bet-
ter) performance while being significantly faster (up to 2×)
and requiring less accelerator memory.
Self-conditioning. In Table 3c we study the influence of
varying the self-conditioning rate psc on generation quality.
We notice a clear trend: increasing the self conditioning rate
from 0.0 (no self-conditioning) to 0.9 improves the FVD
score substantially (44%).
AdaLN-LoRA. An important design decision in diffusion
models is the conditioning mechanism. We investigate the
effect of increasing the bottleneck dimension r in our pro-
posed AdaLN-LoRA layers (Table 3d). This hyperparameter
provides a flexible way to trade off between number of model
parameters and generation performance. As shown in Ta-
ble 3d, increasing r improves performance but also increases
model parameters. This highlights an important model de-
sign question: given a fixed parameter budget, how should
we allocate parameters - either by using separate AdaLN
layers, or by increasing base model parameters while using
shared AdaLN-LoRA layers? We explore this in Table 4
by comparing two model configurations: W.A.L.T-L with
separate AdaLN layers and W.A.L.T-XL with AdaLN-LoRA
and r = 2. While both configurations yield similar FVD and
Inception scores, W.A.L.T-XL achieves a lower final loss
value, suggesting the advantage of allocating more parame-
ters to the base model and choosing an appropriate r value
within accelerator memory limits.
Noise schedule. Common latent diffusion noise sched-
ules [61] typically do not ensure a zero signal-to-noise ra-

tio (SNR) at the final timestep, i.e., at t = 1, γ(t) > 0.
This leads to a mismatch between training and inference
phases. During inference, models are expected to start from
purely Gaussian noise, whereas during training, at t = 1, a
small amount of signal information remains accessible to
the model. This is especially harmful for video generation
as videos have high temporal redundancy. Even minimal
information leakage at t = 1 can reveal substantial informa-
tion to the model. Addressing this mismatch by enforcing a
zero terminal SNR [48] significantly improves performance
(Table 3e). Note that this approach was originally proposed
to fix over-exposure problems in image generation, but we
find it effective for video generation as well.
Autoencoder. Finally, we investigate one critical but often
overlooked hyperparameter in the first stage of our model:
the channel dimension c of the autoencoder latent z. As
shown in Table 3f, increasing c significantly improves the
reconstruction quality (lower rFVD) while keeping the same
spatial fs and temporal compression ft ratios. Empirically,
we found that both lower and higher values of c lead to
poor FVD scores in generation, with a sweet spot of c = 8
working well across most datasets and tasks we evaluated.
We also normalize the latents before processing them via
transformer which further improves performance.

In our transformer models, we use query-key normal-
ization [14] as it helps stabilize training for larger models.
Finally, we note that some of our default settings are not
optimal, as indicated by ablation studies. These defaults
were chosen early on for their robustness across datasets,
though further tuning may improve performance.

5.3. Text-to-video

We train W.A.L.T for text-to-video jointly on text-image and
text-video pairs (Sec. 4.2). We used a dataset of ∼970M
text-image pairs and ∼89M text-video pairs from the public
internet and internal sources. We train our base model at



A	polar	bear	swimming.

Pouring	beer	into	an	empty	glass,	low	angle	shot,	bar	in	the	background.

A	cat	eating	food	out	of	a	bowl,	in	the	style	of	Van	Gogh.

Pouring	chocolate	sauce	over	vanilla	ice	cream	in	a	cone,	studio	lighting.

A	robot	ballerina	dancing	gracefully,	highly	detailed,	studio	lighting.

A	cute	panda	skateboarding	in	the	sky,	over	snow	covered	mountains,	with	dreamy	whimsical	atmosphere.

An	astronaut	riding	a	horse.

Figure 3. Qualitative evaluation. Example videos generated by W.A.L.T from natural language prompts at 512× 896 resolution over 3.6
seconds duration at 8 frames per second. The W.A.L.T model is able to generate temporally consistent photorealistic videos that align with
the textual prompt.



Figure 4. Examples of consistent 3D camera motion (5.1 secs).
Prompts: camera turns around a {blue jay, bunny}, studio lighting,
360◦ rotation. Best viewed in video format.

resolution 17 × 128 × 128 (3B parameters), and two 2×
cascaded super-resolution models for 17 × 128 × 224 →
17 × 256 × 448 (L, 1.3B, p = 2) and 17 × 256 × 448 →
17× 512× 896 (L, 419M, p = 2) respectively. We fine-tune
the base stage for the 9 : 16 aspect ratio to generate videos
at resolution 128× 224. We use classifier free guidance for
all our text-to-video results.

5.3.1 Quantitative Evaluation

Evaluating text-conditioned video generation systems scien-
tifically remains a significant challenge, in part due to the
absence of standardized training datasets and benchmarks.
So far we have focused our experiments and analyses on the
standard academic benchmarks, which use the same training
data to ensure controlled and fair comparisons. Nevertheless,
to compare with prior work on text-to-video, we also report
results on the UCF-101 dataset in the zero-shot evaluation
protocol in Table 5 [24, 37, 66]. Also see supplement.

Joint training. A primary strength of our framework is
its ability to train simultaneously on both image and video
datasets. In Table 5 we ablate the impact of this joint training
approach. Specifically, we trained two versions of W.A.L.T-
L (each with 419M params.) models using the default set-
tings specified in § 5.2. We find that joint training leads
to a notable improvement across both metrics. Our results
align with the findings of Ho et al. [36], who demonstrated
the benefits of joint training for pixel-based video diffusion
models with U-Net backbones.

Scaling. Transformers are known for their ability to scale
effectively in many tasks [5, 14, 55]. In Table 5 we show the
benefits of scaling our transformer model for video diffusion.
Scaling our base model size leads to significant improve-
ments on both the metrics. It is important to note, however,

Method IS (↑) FVD (↓)
CogVideo (Chinese) [37] 23.6 751.3
CogVideo (English) [37] 25.3 701.6
MagicVideo [88] - 699.0
Make-A-Video [66] 33.0 367.2
Video LDM [4] 33.5 550.6
PYoCo [24] 47.8 355.2

W.A.L.T (Ours) 419M (video only) 26.8 598.8
W.A.L.T (Ours) 419M (video + image) 31.7 344.5
W.A.L.T (Ours) 3B (video + image) 35.1 258.1

Table 5. UCF-101 text-to-video generation. Joint training on
image and video datasets in conjunction with scaling the model
parameters is essential for high quality video generation.

that our base model is considerably smaller than leading
text-to-video systems. For instance, Ho et al. [34] trained
base model of 5.7B parameters. Hence, we believe scaling
our models further is an important direction of future work.

Comparison with prior work. In Table 5, we present a
system-level comparison of various text-to-video generation
methods. Our results are promising; we surpass all previous
work in the FVD metric. In terms of the IS, our performance
is competitive, outperforming all but PYoCo [24]. A possible
explanation for this discrepancy might be PYoCo’s use of
stronger text embeddings. Specifically, they utilize both
CLIP [57] and T5-XXL [60] encoders, whereas we employ
a T5-XL [60] text encoder only.

5.3.2 Qualitative Results

As mentioned in § 4.4, we jointly train our model on the
task of frame prediction conditioned on 1 or 2 latent frames.
Hence, our model can be used for animating images (image-
to-video) and generating longer videos with consistent cam-
era motion (Fig. 4). See videos on our project website.

6. Conclusion

In this work, we introduce W.A.L.T, a simple, scalable, and
efficient transformer-based framework for latent video dif-
fusion models. We demonstrate state-of-the-art results for
image and video generation using a transformer backbone
with windowed attention. We also train a cascade of three
W.A.L.T models jointly on image and video datasets, to
synthesize high-resolution, temporally consistent photore-
alistic videos from natural language descriptions. While
generative modeling has seen tremendous recent advances
for images, progress on video generation has lagged behind.
We hope that scaling our unified framework for image and
video generation will help close this gap.

https://walt-video-diffusion.github.io/
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T2V (base)

Input 5× 16× 28
Spatial window 1× 16× 28
Spatiotermporal window 5× 8× 14
Training steps 250000
Batch size 512
lr schedule Constant
Optimizer Adafactor
lr 0.00005

Table 6. Hyperparameters for aspect-ratio finetuning.

A. Implementation Details

For the first stage, we follow the architecture and hyperpa-
rameters from Yu et al. [82]. We report hyperparameters
specific for training our model in Table 8. To train the sec-
ond stage transformer model, we use the default settings
of 1 × 16 × 16 spatial window, 5 × 8 × 8 spatiotemporal
window, psc = 0.9, c = 8 and r = 2. We summarize addi-
tional training and inference hyperparameters for all tasks
in Table 8. The UCF-101 model results reported in Tables 1
and 4 are trained for 60, 000 steps. We perform all ablations
on UCF-101 with 35, 000 training steps.

Aspect-ratio finetuning. To simplify training and lever-
age broad data sources with different aspect ratios, we train
the base stage using a square aspect ratio. We fine-tune the
base the stage on a subset of data to generate videos with
a 9 : 16 aspect ratio. We interpolate the absolute and rela-
tive position embeddings and scale the window sizes. We
summarize the finetuning hyperparameters in Table 6.

Long video generation. As described in § 4.4, we train
our model jointly on the task of frame prediction. During
inference, we generate videos as follows: Given a natural
language description of a video, we first generate the initial
17 frames using our base model. Next, we encode the last 5
frames into 2 latent frames using our causal 3D encoder. Pro-
viding 2 latent frames as input for subsequent autoregressive
generation helps ensure that our model can maintain conti-
nuity of motion and produce temporally consistent videos.

UCF-101 Text-to-Video. We follow the evaluation pro-
tocol of prior work [24], and adapt their prompts to better
describe the UCF-101 classes.

B. Additional Results

B.1. Image Generation

We compare (Table 7) W.A.L.T with state-of-the-art image
generation methods for 256 × 256 resolution with classi-
fier free guidance. Unlike, prior work [22, 53, 87] using
Transformer for diffusion modelling, we did not observe
significant benefit of using vanilla classifier free guidance.
Hence, we report results using the power cosine schedule
proposed by Gao et al. [22]. Our model performs better
than prior works on the Inception Score metric, and achieves

Method Cost (Iter×BS) FID↓ IS↑ Params. Steps

LDM-4 [61] 178k×1200 3.60 247.7 400M 250
DiT-XL/2 [53] 7000k×256 2.27 278.2 675M 250
ADM [16] - 3.94 215.8 608M 2000
MDT [22] 6500k×256 1.79 283.0 676M 250
MaskDiT [87] 1200k×1024 2.28 276.6 736M 40
simple diffusion [38] 500K×2048 2.44 256.3 2B 512
VDM++ [45] - 2.12 267.7 2B 512

W.A.L.T-L Ours 437k×1024 2.40 290.5 460M 50

Table 7. Class-conditional image generation on ImageNet
256×256. We adopt the evaluation protocol and implementation
of ADM [16] and report results with classifier free guidance.

Figure 5. ImageNet class-conditional generation samples.

competitive FID scores. Fig. 5 shows qualitative samples.

B.2. Video Generation

We show samples for Kinetics-600 frame prediction in Fig. 6.

B.3. Image-to-Video

As noted in Section 4.4, we train our model jointly on the task
of frame prediction, where we condition on 1 latent frame.
This allows us to leverage the high quality first frame from
the image generator as context for predicting subsequent
frames. For qualitative results see videos on our project
website.

https://walt-video-diffusion.github.io/
https://walt-video-diffusion.github.io/


ImageNet UCF-101 K600 T2V (base) T2V (2×) T2V (2×2×)

First Stage
Input 1× 256× 256 17× 128× 128 17× 128× 128 17× 128× 128 17× 256× 448 17× 512× 896
fs, ft 8, - 8, 4 8, 4 8, 4 8, 4 8, 4
Channels 128 128 128 128 128 128
Channel multiplier 1,1,2,4 1, 2, 2, 4 1, 2, 2, 4 1, 2, 2, 4 1, 2, 2, 4 1, 2, 2, 4
Training duration 270 epochs 2000 epochs 270000 steps 1000000 steps 1000000 steps 1000000 steps
Batch size 256 256 256 256 256 256
lr schedule Cosine Cosine Cosine Cosine Cosine Cosine
Optimizer Adam Adam Adam Adam Adam Adam

Second Stage
Input 1× 32× 32 5× 16× 16 5× 16× 16 5× 16× 16 5× 32× 56 5× 64× 112
Layers 24 28 24 52 40 24
Hidden size 1024 1152 1024 9216 1408 1024
Heads 16 16 16 16 16 16
Training duration 350 epochs 60000 steps 360 epochs 550000 steps 675000 steps 275000 steps
Batch size 1024 256 512 512 512 512
lr schedule Cosine Cosine Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW Adafactor Adafactor Adafactor
lr 0.0005 0.0005 0.0005 0.0002 0.0005 0.0005
EMA X X X 7 7 7
Patch size 1 1 1 1 2 4
AdaLN-LoRA 7 2 2 2 2 2

Diffusion
Diffusion Steps 1000 1000 1000 1000 1000 1000
Noise schedule Linear Linear Linear Linear Linear Linear
β0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
β1000 0.02 0.02 0.02 0.02 0.02 0.02
Sampler DDIM DDIM DDIM DDIM DDIM DDIM
Sampling steps 50 50 50 50 50 50
Guidance 7 7 7 X X X

Table 8. Training and evaluation hyperparameters.

Figure 6. Frame prediction samples on Kinetics-600. Top: ground-truth, where unobserved frames are shaded. Bottom: generation.
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